skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solko-Breslin, Alaia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many computational tasks can be naturally expressed as a composition of a DNN followed by a program written in a traditional programming language or an API call to an LLM. We call such composites "neural programs" and focus on the problem of learning the DNN parameters when the training data consist of end-to-end input-output labels for the composite. When the program is written in a differentiable logic programming language, techniques from neurosymbolic learning are applicable, but in general, the learning for neural programs requires estimating the gradients of black-box components. We present an algorithm for learning neural programs, called ISED, that only relies on input-output samples of black-box components. For evaluation, we introduce new benchmarks that involve calls to modern LLMs such as GPT-4 and also consider benchmarks from the neurosymbolic learning literature. Our evaluation shows that for the latter benchmarks, ISED has comparable performance to state-of-the-art neurosymbolic frameworks. For the former, we use adaptations of prior work on gradient approximations of black-box components as a baseline, and show that ISED achieves comparable accuracy but in a more data- and sample-efficient manner. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  2. P4 is a domain-specific language for programming and specifying packet-processing systems. It is based on an elegant design with high-level abstractions like parsers and match-action pipelines that can be compiled to efficient implementations in software or hardware. Unfortunately, like many industrial languages, P4 has developed without a formal foundation. The P4 Language Specification is a 160-page document with a mixture of informal prose, graphical diagrams, and pseudocode, leaving many aspects of the language semantics up to individual compilation targets. The P4 reference implementation is a complex system, running to over 40KLoC of C++ code, with support for only a few targets. Clearly neither of these artifacts is suitable for formal reasoning about P4 in general. This paper presents a new framework, called Petr4, that puts P4 on a solid foundation. Petr4 consists of a clean-slate definitional interpreter and a core calculus that models a fragment of P4. Petr4 is not tied to any particular target: the interpreter is parameterized over an interface that collects features delegated to targets in one place, while the core calculus overapproximates target-specific behaviors using non-determinism. We have validated the interpreter against a suite of over 750 tests from the P4 reference implementation, exercising our target interface with tests for different targets. We validated the core calculus with a proof of type-preserving termination. While developing Petr4, we reported dozens of bugs in the language specification and the reference implementation, many of which have been fixed. 
    more » « less